Reg No.: Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks

- 1 a) Prove that $f(z) = e^{x+iy}$ is analytic. Find f'(z). (7)
 - b) Show that $v = 3x^2y y^3$ is harmonic. Also find the harmonic conjugate of v. (8)
- 2 a) Find the linear fractional transformation that maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ (8) onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively.
 - b) Find the image of the lines x = a and y = b where a and b are constants, under (7) the transformation $w = z^2$
- 3 a) If f(z) = u + iv is analytic, prove that $u = c_1$ and $v = c_2$ are families of curves (7) cutting orthogonally.
 - b) Prove that $w = \frac{z-i}{1-iz}$ maps the upper half plane (y>0) into the interior of $|\mathbf{w}| = 1$ (8)

PART B

Answer any two full questions, each carries 15 marks

- 4 a) Expand $f(z) = \frac{1}{z^2}$ as Taylor's series about z = 2 (7)
 - b) Evaluate $\oint_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz$ where C is |z| = 3, using Cauchy's integral formula. (8)
- 5 a) Evaluate $\oint_{C} \frac{z-23}{z^2-4z-5} dz$ where C: |z-2-i| = 3.2, using Cauchy's residue (7) theorem.
 - b) Show that $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx = \frac{3\pi}{8}$ (8)
- Find the Laurent's series expansion of $f(z) = \frac{e^{2z}}{(z+1)^2}$ about z = -1 (7)
 - b) Find the poles and residues of the function $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ (8)

PART C

Answer any two full questions, each carries 20 marks

- 7 a) Find the Eigen value and Eigen vector of the matrix $A = \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$ (8)
 - b) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17 \end{bmatrix}$ (6)
 - c) Solve the system of equations x y + z = 0, -x + y z = 0, (6) 10y + 25z = 90, 20x + 10y = 80
- 8 a) Find out what type of conic section the quadratic form $q = 3x_1^2 + 21x_1x_2 + 3x_2^2 = 0$ represents. (8)
 - b) Show that the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & \sqrt{3} \\ 0 & \sqrt{3} & 1 \end{bmatrix}$ is orthogonal. (6)
 - c) Show that the system of equations are inconsistent. (6) $2x + 6y = -11, \quad 6x + 20y 6z = -3, \quad 6y 18z = -1$
- 9 a) (i) Show that the vectors (1,-1,0), (1,3,-1) and (5,3,-2) are linearly (8) dependent.
 - (ii) Show that the quadratic form $4x_1^2 + 12x_1x_2 + 13x_2^2 = 16$ is positive definite.
 - b) Diagonalize the matrix $A = \begin{bmatrix} 6 & 0 & 0 \\ 12 & 2 & 0 \\ 21 & -6 & 9 \end{bmatrix}$ (12)